Section 11.1

Chapter II Field extensions
Recall (Section 3.1)
Field is commutative ring R with identity ${ }_{R} \neq O_{R}$ such that for every $a \in R, a \neq O_{R}$ the equation $a x=I_{R}$ this a solution in R.
Field is a set F with two operations (addition and umltiplication) which satisfy $a(b+c)=a b+a c$ for ${ }^{+}$every $a, b, e \in F$
such that F is an abelian group with respect to the addition with the neutral element O_{F}
$F \backslash\left\{O_{F} Y=F^{*}\right.$ is an abelian group with respect to the multiplication with the neutral element I_{F}
Examples: $\mathbb{A}, \mathbb{R}, \mathbb{C}, \nabla_{p}, p$ is a prime
leninimatistic example - ∇_{2} - a field out of two elements
Field extension $F \subseteq K$, both fields $O_{F}=O_{K}$
K is an extension of F
F is a subfield of K

Section II.1 If $F \subseteq K$ is a field extension, then K is a vector space over F
Recall from Linear Algebra
Def Vector space V over a field F is an abelian group, and multiplication by an abelian group, and multiplication by $\quad\left\{\begin{array}{l}z \in \mathbb{R}\end{array} \quad a, b \in \mathbb{R}\right.$ scalars (elements of F) is defined and satisfies

$$
\begin{array}{ccc}
a\left(v_{1}+v_{2}\right)=a V_{1}+a V_{2} & a \in F, & v_{1}, v_{2} \in V \\
\left(a_{1}+a_{2}\right) V=a_{1} V+a_{2} V & a_{1}, a_{2} \in F, & V \in V \\
a_{1}\left(a_{2} V\right)=\left(a_{1} a_{2}\right) V & a_{1}, a_{2} \in F & v \in V \\
l_{F} V=V & & v \in V
\end{array}
$$

Notions to reviews: dimension, basis
If $v_{1}, \ldots, v_{n} \in V$, then $a_{1} v_{1}+\ldots+a_{n} v_{n}$ with $a_{i} \in F$ is called a linear combination of vectors v_{1}, \ldots, v_{n}.
V_{1}, \ldots, V_{n} is a spanning set for V
if every element of V can $b c$ written as a linear combination of V_{3}, \ldots, V_{n}
v_{1}, \ldots, v_{n} are linearly independent if
$c_{1} v_{1}+\ldots+e_{n} v_{n}=O_{V}$ implies $e_{1}=\ldots=c_{n}=O_{F}$

$$
c_{i} \in F \quad v_{i} \in V
$$

Basis of V (rector space) over F is a spanning set which linearly indep. A vector space is called finite-dimeusional if it admits a finite spanning set
Every finite spanning set contains (can be reduced to) a basis.
Lemma $11.1 \quad u_{1}, \ldots, u_{n} \in V$ is linearly dependent iff there is u_{k} which is a linear combination of preceding vectors $\left(u_{1}, \ldots, u_{k-1}\right)$.
Lerenvea 11,2 If v_{1}, \ldots, v_{n} span V and
u_{1}, \ldots, u_{m} are linearly independent, then $u \leq h$

Th 11.3 Every two bases for a vector space V have same numbers of elements
Def dimension of a finite-dinensional vector space is the number of elements in any basis of V

For a field extension $F \subseteq K$, the dimension of K as a vector space over F is denoted by $[k: F]$.
(in all cases under our consideration the dimension is finite)

Gas to check:
$[k: F]=1$ means $K=F$
Tufinite-dimensional:
$\square \subset \mathbb{C}$
$T h l l . H \quad F \subseteq K \subseteq L$
If $[k: F]$ and $[L: K]$ are finite, then so is $[L: F]$.
luoreover $[L: F]=[L: K][K: F]$.
Pf Let v_{1}, \ldots, v_{n} be a basis for t over k

$$
u_{1}, \ldots, u_{m}-k-1-F
$$

Claim huiviy form a basis of L over F

$$
\{\text { implies }[L: F]=n m
$$

$$
\begin{aligned}
& i=1 \ldots m \\
& j=1 \ldots n
\end{aligned} \quad u_{i} v_{j} \in L
$$

Th II. 5 Let $K \supseteq F$ and $L \supseteq F$ be two field extensions (finite-dimil) Let $f: K \rightarrow L$ be a field isomorphism such that $\left\{\left.f\right|_{F}=i d\right.$

$$
f(e)=c \quad \text { for every } c \in F
$$

Then $[L: F]=[K: F]$
Pf f takes a basis to a basis:
Let u_{1}, \ldots, u_{n} be a basis of k over F.
Wanted: $f\left(u_{1}\right), \ldots f\left(u_{n}\right)$ is a basis of L over F
(1) Spans $v \in L$

Since f is an isomorphism, f is surjeetive $v=f(u), u \in K$

$$
\begin{aligned}
u & =a_{1} u_{1}+\ldots+c_{n} u_{n} \quad c_{i} \in F \subseteq K \\
v= & f(u)=f\left(c_{1} u_{1}\right)+\ldots f\left(c_{n} u_{n}\right)=f\left(e_{1}\right) f\left(u_{1}\right)+\ldots+f\left(c_{n}\right) f\left(u_{n}\right) \\
& =c_{1} f\left(u_{1}\right)+\ldots+c_{n} f\left(u_{n}\right)
\end{aligned}
$$

(2) Linearly independent

Let $c_{1} f\left(u_{1}\right)+\ldots+c_{n} f\left(u_{n}\right)=0 \quad c_{i \in F}$ Wanted: $c_{1}=\ldots=c_{n}=0$

$$
f\left(c_{1} u_{1}+\ldots+c_{n} u_{n}\right)=0
$$

Since f is an isomorpfisser, f is injective

$$
a_{1} \mu_{1}+\ldots+c_{n} u_{n}=0 \text { implies } a_{1}=\ldots=e_{n}=0
$$

because u_{1}, \ldots, u_{n} is a basis of K over F, therefore. linearly independent.

